End-to-end test of an online adaptive treatment procedure in MR-guided radiotherapy using a phantom with anthropomorphic structures

Author:

Elter AORCID,Dorsch SORCID,Mann PORCID,Runz A,Johnen W,Spindeldreier C K,Klüter S,Karger C P

Abstract

Abstract Online adaptive treatment procedures in magnetic resonance (MR)-guided radiotherapy (MRgRT) allow compensating for inter-fractional anatomical variations in the patient. Clinical implementation of these procedures, however, requires specific end-to-end tests to validate the treatment chain including imaging, treatment planning, positioning, treatment plan adaption and accurate dose delivery. For this purpose, a new phantom with reproducibly adjustable anthropomorphic structures has been developed. These structures can be filled either with contrast materials providing anthropomorphic image contrast in MR and CT or with polymer dosimetry gel (PG) allowing for 3D dose measurements. To test an adaptive workflow at a 0.35 T MR-Linac, the phantom was employed in two settings simulating inter-fractional anatomical variations within the patient. The settings included two PG-filled structures representing a tumour and an adjacent organ at risk (OAR) as well as five additional structures. After generating a treatment plan, three irradiation experiments were performed: (i) delivering the treatment plan to the phantom in reference setting, (ii) delivering the treatment plan after changing the phantom to a displaced setting without adaption, and (iii) adapting the treatment plan online to the new setting and delivering it to the phantom. PG measurements revealed a homogeneous tumour coverage and OAR sparing for experiment (i) and a significant under-dosage in the PTV (down to 45% of the prescribed dose) and over-dosage in the OAR (up to 180% relative to the planned dose) in experiment (ii). In experiment (iii), a uniform dose in the PTV and a significantly reduced dose in the OAR was obtained, well-comparable to that of experiment (i) where no adaption of the treatment plan was necessary. PG measurements were well comparable with the corresponding treatment plan in all irradiation experiments. The developed phantom can be used to perform end-to-end tests of online adaptive treatment procedures at MR-Linac devices before introducing them to patients.

Funder

EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme

Publisher

IOP Publishing

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3