Modeling families of particle distributions with conditional GAN for Monte Carlo SPECT simulations

Author:

Saporta Albert,Etxebeste AneORCID,Kaprelian Théo,Létang Jean MichelORCID,Sarrut DavidORCID

Abstract

Abstract Objective. We propose a method to model families of distributions of particles exiting a phantom with a conditional generative adversarial network (condGAN) during Monte Carlo simulation of single photon emission computed tomography imaging devices. Approach. The proposed condGAN is trained on a low statistics dataset containing the energy, the time, the position and the direction of exiting particles. In addition, it also contains a vector of conditions composed of four dimensions: the initial energy and the position of emitted particles within the phantom (a total of 12 dimensions). The information related to the gammas absorbed within the phantom is also added in the dataset. At the end of the training process, one component of the condGAN, the generator (G), is obtained. Main results. Particles with specific energies and positions of emission within the phantom can then be generated with G to replace the tracking of particle within the phantom, allowing reduced computation time compared to conventional Monte Carlo simulation. Significance. The condGAN generator is trained only once for a given phantom but can generate particles from various activity source distributions.

Funder

Investissements d’Avenir

SIRIC LYriCAN

POPEYE ERA PerMed 2019

MOCAMED

LabEx PRIMES

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference38 articles.

1. Recent developments in Geant4;Allison;Nucl. Instrum. Methods Phys. Res., Sect. A,2016

2. Wasserstein GAN;Arjovsky,2017

3. Preliminary investigation of a Monte Carlo-based system matrix approach for quantitative clinical brain 123 I SPECT imaging;Auer,2018

4. Analysis of spect including scatter and attenuation using sophisticated monte carlo modeling methods;Beck;IEEE Trans. Nucl. Sci.,1982

5. In-silico optimisation of tileable philips digital SiPM based thin monolithic scintillator detectors for SPECT applications;Brown;Appl. Radiat. Isot.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3