Training low dose CT denoising network without high quality reference data

Author:

Jing Jie,Xia WenjunORCID,Hou Mingzheng,Chen Hu,Liu Yan,Zhou Jiliu,Zhang YiORCID

Abstract

Abstract Objective. Currently, the field of low-dose CT (LDCT) denoising is dominated by supervised learning based methods, which need perfectly registered pairs of LDCT and its corresponding clean reference image (normal-dose CT). However, training without clean labels is more practically feasible and significant, since it is clinically impossible to acquire a large amount of these paired samples. In this paper, a self-supervised denoising method is proposed for LDCT imaging. Approach. The proposed method does not require any clean images. In addition, the perceptual loss is used to achieve data consistency in feature domain during the denoising process. Attention blocks used in decoding phase can help further improve the image quality. Main results. In the experiments, we validate the effectiveness of our proposed self-supervised framework and compare our method with several state-of-the-art supervised and unsupervised methods. The results show that our proposed model achieves competitive performance in both qualitative and quantitative aspects to other methods. Significance. Our framework can be directly applied to most denoising scenarios without collecting pairs of training data, which is more flexible for real clinical scenario.

Funder

Sichuan Science and Technology Program

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference37 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3