Predicting the hotspot location and motor threshold prior to transcranial magnetic stimulation using electric field modelling

Author:

Matilainen NooraORCID,Kataja JuhaniORCID,Laakso IlkkaORCID

Abstract

Abstract Objective. To investigate whether the motor threshold (MT) and the location of the motor hotspot in transcranial magnetic stimulation (TMS) can be predicted with computational models of the induced electric field. Approach. Individualized computational models were constructed from structural magnetic resonance images of ten healthy participants, and the induced electric fields were determined with the finite element method. The models were used to optimize the location and direction of the TMS coil on the scalp to produce the largest electric field at a predetermined cortical target location. The models were also used to predict how the MT changes as the magnetic coil is moved to various locations over the scalp. To validate the model predictions, the motor evoked potentials were measured from the first dorsal interosseous (FDI) muscle with TMS in the ten participants. Both computational and experimental methods were preregistered prior to the experiments. Main results. Computationally optimized hotspot locations were nearly as accurate as those obtained using manual hotspot search procedures. The mean Euclidean distance between the predicted and the measured hotspot locations was approximately 1.3 cm with a 0.8 cm bias towards the anterior direction. Exploratory analyses showed that the bias could be removed by changing the cortical target location that was used for the prediction. The results also indicated a statistically significant relationship (p < 0.001) between the calculated electric field and the MT measured at several locations on the scalp. Significance. The results show that the individual TMS hotspot can be located using computational analysis without stimulating the subject or patient even once. Adapting computational modelling would save time and effort in research and clinical use of TMS.

Funder

Academy of Finland

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3