Radiomics in clinical trials: perspectives on standardization

Author:

Nie Ke,Xiao Ying

Abstract

Abstract The term biomarker is used to describe a biological measure of the disease behavior. The existing imaging biomarkers are associated with the known tissue biological characteristics and follow a well-established roadmap to be implemented in routine clinical practice. Recently, a new quantitative imaging analysis approach named radiomics has emerged. It refers to the extraction of a large number of advanced imaging features with high-throughput computing. Extensive research has demonstrated its value in predicting disease behavior, progression, and response to therapeutic options. However, there are numerous challenges to establishing it as a clinically viable solution, including lack of reproducibility and transparency. The data-driven nature also does not offer insights into the underpinning biology of the observed relationships. As such, additional effort is needed to establish it as a qualified biomarker to inform clinical decisions. Here we review the technical difficulties encountered in the clinical applications of radiomics and current effort in addressing some of these challenges in clinical trial designs. By addressing these challenges, the true potential of radiomics can be unleashed.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference143 articles.

1. Interpretation of radiomics features-A pictorial review;Abbasian Ardakani;Comput. Methods Programs Biomed.,2022

2. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach;Aerts;Nat. Commun.,2014

3. From handcrafted to deep-learning-based cancer radiomics: challenges and opportunities;Afshar;IEEE Signal Process Mag.,2019

4. MedNet: pre-trained convolutional neural network model for the medical imaging tasks;Alzubaidi,2021

5. Influence of magnetic field strength on magnetic resonance imaging radiomics features in brain imaging, an in vitro and in vivo study;Ammari;Front. Oncol.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3