Impact of respiratory motion on proton pencil beam scanning FLASH radiotherapy: an in silico and phantom measurement study

Author:

Yang YunjieORCID,Kang Minglei,Huang Sheng,Chen Chin-Cheng,Tsai Pingfang,Hu Lei,Yu Francis,Hajj Carla,Choi J Isabelle,Tome Wolfgang A,Simone Charles B,Lin Haibo

Abstract

AbstractObjective. To investigate the effects of respiratory motion on the delivered dose in the context of proton pencil beam scanning (PBS) transmission FLASH radiotherapy (FLASH-RT) by simulation and phantom measurements.Approach. An in-house simulation code was employed to performin silicosimulation of 2D dose distributions for clinically relevant proton PBS transmission FLASH-RT treatments. A moving simulation grid was introduced to investigate the impacts of various respiratory motion and treatment delivery parameters on the dynamic PBS dose delivery. A strip-ionization chamber array detector and an IROC motion platform were employed to perform phantom measurements of the 2D dose distribution for treatment fields similar to those used for simulation.Main results. Clinically relevant respiratory motion and treatment delivery parameters resulted in degradation of the delivered dose compared to the static delivery as translation and distortion. Simulation showed that the gamma passing rates (2 mm/2% criterion) and target coverage could drop below 50% and 80%, respectively, for certain scenarios if no mitigation strategy was used. The gamma passing rates and target coverage could be restored to more than 95% and 98%, respectively, for short beams delivered at the maximal inhalation or exhalation phase. The simulation results were qualitatively confirmed in phantom measurements with the motion platform.Significance. Respiratory motion could cause dose quality degradation in a clinically relevant proton PBS transmission FLASH-RT treatment if no mitigation strategy is employed, or if an adequate margin is not given to the target. Besides breath-hold, gated delivery can be an alternative motion management strategy to ensure high consistency of the delivered dose while maintaining minimal dose to the surrounding normal tissues. To the best of our knowledge, this is the first study on motion impacts in the context of proton transmission FLASH radiotherapy.

Funder

Varian Medical Systems

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3