Automatic segmentation of rectal tumors from MRI using multiscale densely connected convolutional neural network based on attention mechanism

Author:

Zhang Kenan,Yang Xiaotang,Cui Yanfen,Zhao Jumin,Li DengaoORCID

Abstract

Abstract Rectal cancer is one of the most common malignancies in the gastrointestinal tract. Currently, magnetic resonance imaging has become a vital tool in diagnosing and treating patients with rectal cancer. Notably, early diagnosis of rectal cancer can help improve patient survival rate; however, the clinical expertize of physicians is a limiting factor. Therefore, we propose an attention-based multiscale densely connected convolutional neural network based on an attention mechanism to improve the accuracy of diagnosis by automatically segmenting rectal tumors from two-dimensional (2D) magnetic resonance images (MRI) using computer-aided diagnostic techniques. First, to address the inability of U-Net (a classical segmentation network for medical images) and extract rich semantic features and the inconsistent shape and size of tumors between different patients, we replace the conventional convolutional blocks in the U-Net network with multiscale densely connected convolutional blocks. Second, to make the network focus better on global contextual information, we add central blocks with atrous convolution in the final coding layer or the last coding layer. Finally, we add a hybrid attention mechanism to each decoder module to help the model focus on the features of the rectal tumor region. We validated the effectiveness of the proposed method using 3773 2D MRI datasets from 572 patients. The sensitivity, specificity, Dice correlation coefficient, and Hausdorff distance of MRI rectal tumor segmentation were 85.47%, 86.35%, 94.71%, and 7.88 mm, respectively. The results showed that the proposed method outperforms conventional approaches. Moreover, the proposed method has better segmentation results in the rectal tumor segmentation task and can provide physicians with the second-most important clinical diagnostic opinion.

Funder

Key Research and Development Projects of Shanxi Province

Central Government Guided Local Science and Technology Development Fund Project

National Natural Science Foundation of China

National Major Scientific Research Instrument Development Project of China

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human-in-the-loop informed deep learning rectal tumor segmentation on pre-treatment MRI;Medical Imaging 2024: Computer-Aided Diagnosis;2024-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3