Relative stopping power resolution in time-of-flight proton CT

Author:

Krah NilsORCID,Dauvergne DenisORCID,Létang Jean MichelORCID,Rit SimonORCID,Testa ÉtienneORCID

Abstract

Abstract Objective. Proton computed tomography (CT) is similar to x-ray CT but relies on protons rather than photons to form an image. In its most common operation mode, the measured quantity is the amount of energy that a proton has lost while traversing the imaged object from which a relative stopping power map can be obtained via tomographic reconstruction. To this end, a calorimeter which measures the energy deposited by protons downstream of the scanned object has been studied or implemented as energy detector in several proton CT prototypes. An alternative method is to measure the proton’s residual velocity and thus its kinetic energy via the time of flight (TOF) between at least two sensor planes. In this work, we study the RSP resolution, seen as image noise, which can be expected from TOF proton CT systems. Approach. We rely on physics models on the one hand and statistical models of the relevant uncertainties on the other to derive closed form expressions for the noise in projection images. The TOF measurement error scales with the distance between the TOF sensor planes and is reported as velocity error in ps/m. We use variance reconstruction to obtain noise maps of a water cylinder phantom given the scanner characteristics and additionally reconstruct noise maps for a calorimeter-based proton CT system as reference. We use Monte Carlo simulations to verify our model and to estimate the noise due to multiple Coulomb scattering inside the object. We also provide a comparison of TOF helium and proton CT. Main results. We find that TOF proton CT with 30 ps m−1 velocity error reaches similar image noise as a calorimeter-based proton CT system with 1% energy error (1 sigma error). A TOF proton CT system with a 50 ps m−1 velocity error produces slightly less noise than a 2% calorimeter system. Noise in a reconstructed TOF proton CT image is spatially inhomogeneous with a marked increase towards the object periphery. Our modelled noise was consistent with Monte Carlo simulated images. TOF helium CT offers lower RSP noise at equal fluence, but is less advantageous at equal imaging dose. Significance. This systematic study of image noise in TOF proton CT can serve as a guide for future developments of this alternative solution for estimating the residual energy of protons and helium ions after the scanned object.

Funder

ITMO Cancer

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference42 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3