Optimal treatment plan adaptation using mid-treatment imaging biomarkers

Author:

ten Eikelder S C MORCID,Ferjančič PORCID,Ajdari AORCID,Bortfeld TORCID,den Hertog DORCID,Jeraj RORCID

Abstract

Abstract Previous studies on personalized radiotherapy (RT) have mostly focused on baseline patient stratification, adapting the treatment plan according to mid-treatment anatomical changes, or dose boosting to selected tumor subregions using mid-treatment radiological findings. However, the question of how to find the optimal adapted plan has not been properly tackled. Moreover, the effect of information uncertainty on the resulting adaptation has not been explored. In this paper, we present a framework to optimally adapt radiation therapy treatments to early radiation treatment response estimates derived from pre- and mid-treatment imaging data while considering the information uncertainty. The framework is based on the optimal stopping in radiation therapy (OSRT) framework. Biological response is quantified using tumor control probability (TCP) and normal tissue complication probability (NTCP) models, and these are directly optimized for in the adaptation step. Two adaptation strategies are discussed: (1) uniform dose adaptation and (2) continuous dose adaptation. In the first strategy, the original fluence-map is simply scaled upwards or downwards, depending on whether dose escalation or de-escalation is deemed appropriate based on the mid-treatment response observed from the radiological images. In the second strategy, a full NTCP-TCP-based fluence map re-optimization is performed to achieve the optimal adapted plans. We retrospectively tested the performance of these strategies on 14 canine head and neck cases treated with tomotherapy, using as response biomarker the change in the 3’-deoxy-3’[(18)F]-fluorothymidine (FLT)-PET signals between the pre- and mid-treatment images, and accounting for information uncertainty. Using a 10% uncertainty level, the two adaptation strategies both yield a noteworthy average improvement in guaranteed (worst-case) TCP.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3