CT scanner-specific organ dose coefficients generated by Monte Carlo calculation for the ICRP adult male and female reference computational phantoms

Author:

Jansen Jan TMORCID,Shrimpton Paul C,Edyvean Sue

Abstract

Abstract Objective. Provide analyses of new organ dose coefficients (hereafter also referred to as normalized doses) for CT that have been developed to update the widely-utilized collection of data published 30 years ago in NRPB-SR250. Approach. In order to reflect changes in technology, and also ICRP recommendations concerning use of the computational phantoms adult male (AM) and adult female (AF), 102 series of new Monte Carlo simulations have been performed covering the range of operating conditions for 12 contemporary models of CT scanner from 4 manufacturers. Normalized doses (relative to free air on axis) have been determined for 39 organs, and for every 8 mm or 4.84 mm slab of AM and AF, respectively. Main results. Analyses of results confirm the significant influence (by up to a few tens of percent), on values of normalized organ (or contributions to effective dose (E 103,phan)), for whole body exposure arising from selection of tube voltage and beam shaping filter. Use of partial (when available) rather than a Full fan beam reduced both organ and effective dose by up to 7%. Normalized doses to AF were larger than corresponding figures for AM by up to 30% for organs and by 10% for E 103,phan. Additional simulations for whole body exposure have also demonstrated that: practical simplifications in the main modelling (point source, single slice thickness, neglect of patient couch and immobility of phantom arms) have sufficiently small (<5%) effect on E 103,phan; mis-centring of the phantom away from the axis of rotation by 5 mm (in any direction) leads to changes in normalized organ dose and E 103,phan by up to 20% and 6%, respectively; and angular tube current modulation can result in reductions by up to 35% and <15% in normalized organ dose and E 103,phan, respectively, for 100% cosine variation. Significance. These analyses help advance understanding of the influence of operational scanner settings on organ dose coefficients for contemporary CT, in support of improved patient protection. The results will allow the future development of a new dose estimation tool.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3