Abstract
Abstract
Objective. To evaluate the feasibility of using a deep learning dose prediction approach to identify patients who could benefit most from proton therapy based on the normal tissue complication probability (NTCP) model. Approach. Two 3D UNets were established to predict photon and proton doses. A dataset of 95 patients with localized prostate cancer was randomly partitioned into 55, 10, and 30 for training, validation, and testing, respectively. We selected NTCP models for late rectum bleeding and acute urinary urgency of grade 2 or higher to quantify the benefit of proton therapy. Propagated uncertainties of predicted ΔNTCPs resulting from the dose prediction errors were calculated. Patient selection accuracies for a single endpoint and a composite evaluation were assessed under different ΔNTCP thresholds. Main results. Our deep learning-based dose prediction technique can reduce the time spent on plan comparison from approximately 2 days to as little as 5 seconds. The expanded uncertainty of predicted ΔNTCPs for rectum and bladder endpoints propagated from the dose prediction error were 0.0042 and 0.0016, respectively, which is less than one-third of the acceptable tolerance. The averaged selection accuracies for rectum bleeding, urinary urgency, and composite evaluation were 90%, 93.5%, and 93.5%, respectively. Significance. Our study demonstrates that deep learning dose prediction and NTCP evaluation scheme could distinguish the NTCP differences between photon and proton treatment modalities. In addition, the dose prediction uncertainty does not significantly influence the decision accuracy of NTCP-based patient selection for proton therapy. Therefore, automated deep learning dose prediction and NTCP evaluation schemes can potentially be used to screen large patient populations and to avoid unnecessary delays in the start of prostate cancer radiotherapy in the future.
Funder
Shanghai Key Laboratory of Proton-therapy
Hubei Key Laboratory of Precision Radiation Oncology
Research and Development Program of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献