Simulation study of a brain PET scanner using TOF-DOI detectors equipped with first interaction position detection

Author:

Li Yingying,Watanabe Mitsuo,Isobe Takashi,Ote KiboORCID,Tokui Aoi,Omura Tomohide,Liu HuafengORCID

Abstract

Abstract Objective. The aim of this study is to evaluate the performance characteristics of a brain positron emission tomography (PET) scanner composed of four-layer independent read-out time-of-flight depth-of-interaction (TOF-DOI) detectors capable of first interaction position (FIP) detection, using Geant4 application for tomographic emission(GATE). This includes the spatial resolution, sensitivity, count rate capability, and reconstructed image quality. Approach. The proposed TOF-DOI PET detector comprises four layers of a 50 × 50 cerium-doped lutetium–yttrium oxyorthosilicate (LYSO:Ce) scintillator array with 1 mm pitch size, coupled to a 16 × 16 multi-pixel photon counter array with 3.0 mm × 3.0 mm photosensitive segments. Along the direction distant from the center field-of-view (FOV), the scintillator thickness of the four layers is 2.5, 3, 4, and 6 mm. The four layers were simulated with a 150 ps coincidence time resolution and the independent readout make the FIP detection capable. The spatial resolution and imaging performance were compared among the true-FIP, winner-takes-all (WTA) and front-layer FIP (FL-FIP) methods (FL-FIP selects the interaction position located on the front-most interaction layer in all the interaction layers). The National Electrical Manufacturers Association NU 2-2018 procedure was referred and modified to evaluate the performance of proposed scanner. Main results. In detector evaluation, the intrinsic spatial resolutions were 0.52 and 0.76 mm full width at half-maximum (FWHM) at 0° and 30° incident γ-rays in the first layer pair, respectively. The reconstructed spatial resolution by the filter backprojection (FBP) achieved sub-millimeter FWHM on average over the whole FOV. The maximum true count rate was 207.6 kcps at 15 kBq ml−1 and the noise equivalent count rate (NECR_2R) was 54.7 kcps at 6.0 kBq ml−1. Total sensitivity was 45.2 cps kBq−1 and 48.4 cps kBq−1 at the center and 10 cm off-center FOV, respectively. The TOF and DOI reconstructions significantly improved the image quality in the phantom studies. Moreover, the FL-FIP outperformed the conventional WTA method in terms of the spatial resolution and image quality. Significance. The proposed brain PET scanner could achieve sub-millimeter spatial resolution and high image quality with TOF and DOI reconstruction, which is meaningful to the clinical oncology research. Meanwhile, the comparison among the three positioning methods indicated that the FL-FIP decreased the image degradation caused by Compton scatter more than WTA.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Zhejiang Province

National Key Technology Research and Development Program of China

Talent Program of Zhejiang Province

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3