b-MAR: bidirectional artifact representations learning framework for metal artifact reduction in dental CBCT

Author:

Song Yuyan,Yao Tianyi,Peng Shengwang,Zhu Manman,Meng Mingqiang,Ma JianhuaORCID,Zeng DongORCID,Huang Jing,Bian ZhaoyingORCID,Wang Yongbo

Abstract

Abstract Objective. Metal artifacts in computed tomography (CT) images hinder diagnosis and treatment significantly. Specifically, dental cone-beam computed tomography (Dental CBCT) images are seriously contaminated by metal artifacts due to the widespread use of low tube voltages and the presence of various high-attenuation materials in dental structures. Existing supervised metal artifact reduction (MAR) methods mainly learn the mapping of artifact-affected images to clean images, while ignoring the modeling of the metal artifact generation process. Therefore, we propose the bidirectional artifact representations learning framework to adaptively encode metal artifacts caused by various dental implants and model the generation and elimination of metal artifacts, thereby improving MAR performance. Approach. Specifically, we introduce an efficient artifact encoder to extract multi-scale representations of metal artifacts from artifact-affected images. These extracted metal artifact representations are then bidirectionally embedded into both the metal artifact generator and the metal artifact eliminator, which can simultaneously improve the performance of artifact removal and artifact generation. The artifact eliminator learns artifact removal in a supervised manner, while the artifact generator learns artifact generation in an adversarial manner. To further improve the performance of the bidirectional task networks, we propose artifact consistency loss to align the consistency of images generated by the eliminator and the generator with or without embedding artifact representations. Main results. To validate the effectiveness of our algorithm, experiments are conducted on simulated and clinical datasets containing various dental metal morphologies. Quantitative metrics are calculated to evaluate the results of the simulation tests, which demonstrate b-MAR improvements of >1.4131 dB in PSNR, >0.3473 HU decrements in RMSE, and >0.0025 promotion in structural similarity index measurement over the current state-of-the-art MAR methods. All results indicate that the proposed b-MAR method can remove artifacts caused by various metal morphologies and restore the structural integrity of dental tissues effectively. Significance. The proposed b-MAR method strengthens the joint learning of the artifact removal process and the artifact generation process by bidirectionally embedding artifact representations, thereby improving the model’s artifact removal performance. Compared with other comparison methods, b-MAR can robustly and effectively correct metal artifacts in dental CBCT images caused by different dental metals.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Guangzhou Municipal Science and Technology Project

National Key Research and Development Program of China

Publisher

IOP Publishing

Reference37 articles.

1. Zirconia based ceramics, some clinical and biological aspects;Abd;Future Dental J.,2016

2. Reduction of metal artifacts in CT with Cycle-GAN;Du,2018

3. Deep-learning-based metal artefact reduction with unsupervised domain adaptation regularization for practical ct images;Du;IEEE Trans. Med. Imaging,2023

4. A metal artifact reduction method for a dental CT based on adaptive local thresholding and prior image generation;Hegazy Mohamed;Biomed. Eng. Online,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3