Context-aware dynamic filtering network for confocal laser endomicroscopy image denoising

Author:

Zhou Jingjun,Dong Xiangjiang,Liu Qian

Abstract

Abstract Objective. As an emerging diagnosis technology for gastrointestinal diseases, confocal laser endomicroscopy (CLE) is limited by the physical structure of the fiber bundle, leading to the inevitable production of various forms of noise during the imaging process. However, existing denoising methods based on hand-crafted features inefficiently deal with realistic noise in CLE images. To alleviate this challenge, we proposed context-aware kernel estimation and multi-scale dynamic fusion modules to remove realistic noise in CLE images, including multiplicative and additive white noise. Approach. Specifically, a realistic noise statistics model with random noise specific to CLE data is constructed and further used to develop a self-supervised denoised model without the participation of clean images. Secondly, context-aware kernel estimation, which improves the representation of features by similar learnable region weights, addresses the problem of the non-uniform distribution of noises in CLE images and proposes a lightweight denoised model (CLENet). Thirdly, we have developed a multi-scale dynamic fusion module that decouples and recalibrates features, providing a precise and contextually enriched representation of features. Finally, we integrated two developed modules into a U-shaped backbone to build an efficient denoising network named U-CLENet. Main Results. Both proposed methods achieve comparable or better performance with low computational complexity on two gastrointestinal disease CLE image datasets using the same training benchmark. Significance. The proposed approaches improve the visual quality of unclear CLE images for various stages of tumor development, helping to reduce the rate of misdiagnosis in clinical decision-making and achieve computer graphics-assisted diagnosis.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3