Author:
Seo Jeongwung,Nguon Leang Sim,Park Suhyun
Abstract
Abstract
Objective. Vascular wall motion can be used to diagnose cardiovascular diseases. In this study, long short-term memory (LSTM) neural networks were used to track vascular wall motion in plane-wave-based ultrasound imaging. Approach. The proposed LSTM and convolutional LSTM (ConvLSTM) models were trained using ultrasound data from simulations and tested experimentally using a tissue-mimicking vascular phantom and an in vivo study using a carotid artery. The performance of the models in the simulation was evaluated using the mean square error from axial and lateral motions and compared with the cross-correlation (XCorr) method. Statistical analysis was performed using the Bland–Altman plot, Pearson correlation coefficient, and linear regression in comparison with the manually annotated ground truth. Main results. For the in vivo data, the median error and 95% limit of agreement from the Bland–Altman analysis were (0.01, 0.13), (0.02, 0.19), and (0.03, 0.18), the Pearson correlation coefficients were 0.97, 0.94, and 0.94, respectively, and the linear equations were 0.89x + 0.02, 0.84x + 0.03, and 0.88x + 0.03 from linear regression for the ConvLSTM model, LSTM model, and XCorr method, respectively. In the longitudinal and transverse views of the carotid artery, the LSTM-based models outperformed the XCorr method. Overall, the ConvLSTM model was superior to the LSTM model and XCorr method. Significance. This study demonstrated that vascular wall motion can be tracked accurately and precisely using plane-wave-based ultrasound imaging and the proposed LSTM-based models.
Funder
Korea Medical Device Development Fund
National Research Foundation of Korea
Ewha Womans University Research Grant of 2021
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Online Instance Segmentation and Reconstruction of Ultrasound Vascular Videos;2024 IEEE International Symposium on Medical Measurements and Applications (MeMeA);2024-06-26
2. 2D Motion Tracking for Vascular Wall in Ultrasound Imaging;2024 International Conference on Electronics, Information, and Communication (ICEIC);2024-01-28
3. Ongoing Research Areas in Ultrasound Beamforming;Beamforming in Medical Ultrasound Imaging;2023-11-29