The accuracy of helium ion CT based particle therapy range prediction: an experimental study comparing different particle and x-ray CT modalities

Author:

Volz LORCID,Collins-Fekete C-AORCID,Bär EORCID,Brons S,Graeff CORCID,Johnson R PORCID,Runz A,Sarosiek CORCID,Schulte R WORCID,Seco JORCID

Abstract

Abstract This work provides a quantitative assessment of helium ion CT (HeCT) for particle therapy treatment planning. For the first time, HeCT based range prediction accuracy in a heterogeneous tissue phantom is presented and compared to single-energy x-ray CT (SECT), dual-energy x-ray CT (DECT) and proton CT (pCT). HeCT and pCT scans were acquired using the US pCT collaboration prototype particle CT scanner at the Heidelberg Ion-Beam Therapy Center. SECT and DECT scans were done with a Siemens Somatom Definition Flash and converted to RSP. A Catphan CTP404 module was used to study the RSP accuracy of HeCT. A custom phantom of 20 cm diameter containing several tissue equivalent plastic cubes was used to assess the spatial resolution of HeCT and compare it to DECT. A clinically realistic heterogeneous tissue phantom was constructed using cranial slices from a pig head placed inside a cylindrical phantom (ø150 mm). A proton beam (84.67 mm range) depth-dose measurement was acquired using a stack of GafchromicTM EBT-XD films in a central dosimetry insert in the phantom. CT scans of the phantom were acquired with each modality, and proton depth-dose estimates were simulated based on the reconstructions. The RSP accuracy of HeCT for the plastic phantom was found to be 0.3 ± 0.1%. The spatial resolution for HeCT of the cube phantom was 5.9 ± 0.4 lp cm−1 for central, and 7.6 ± 0.8 lp cm−1 for peripheral cubes, comparable to DECT spatial resolution (7.7 ± 0.3 lp cm−1 and 7.4 ± 0.2 lp cm−1, respectively). For the pig head, HeCT, SECT, DECT and pCT predicted range accuracy was 0.25%, −1.40%, −0.45% and 0.39%, respectively. In this study, HeCT acquired with a prototype system showed potential for particle therapy treatment planning, offering RSP accuracy, spatial resolution, and range prediction accuracy comparable to that achieved with a commercial DECT scanner. Still, technical improvements of HeCT are needed to enable clinical implementation.

Funder

Cancer Research UK

UK Research and Innovation

Particle Therapy Co-Operative Group seed funding

National Institute of Biomedical Imaging and Bioengineering

United States-Israel Binational Science Foundation

Publisher

IOP Publishing

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3