Uncertainty-driven determination of target measurement times for indirect tracking validation in adaptive radiotherapy

Author:

Remy Charlotte,Bouchard Hugo

Abstract

Abstract Objective. Hybrid indirect tumor tracking strategies combine continuous monitoring of surrogate signals with episodic radiographic imaging of the target to check and update their models during the treatment. This validation process is traditionally performed at predetermined and fixed-rate time intervals. This study investigates a new validation procedure based on the real-time uncertainty associated with the predicted target positions. Approach. An adaptive version of a Bayesian method for indirect tracking is developed to simulate different validation processes within a single framework: no validation, regular validation and uncertainty-based validation. While regular validation involves measuring targets at fixed intervals, uncertainty-based validation takes advantage of a key Bayesian feature, which is the real-time confidence information associated with predictions. The validation processes are applied to ground truth breathing signals consisting of a lung target and two different surrogates (one internal, one external). Their impact on prediction accuracy is evaluated with root-mean-square error (RMSE) and incidence of large errors. The number of validation measurements triggered is also examined. Main results. When using the internal surrogate and compared to regular validation, uncertainty-based validation results in significantly better prediction accuracy while using fewer validation measurements: RMSE and fraction of large errors are reduced on average by 12% and 26% respectively, with 36% fewer validation measurements. With the external surrogate, whose correlation with the target is less stable over time, more validation measurements are automatically triggered, which leads to a substantial reduction of prediction errors: RMSE and fraction of large errors are reduced on average by 17% and 28% respectively compared to regular validation. It is also observed that depending on the initial instant, regular validation can result in worse prediction accuracy compared to no validation. Significance. Uncertainty-based validation has the potential to be more efficient and effective than a validation process performed at prescheduled and fixed-rate time intervals.

Funder

Elekta, Medteq and NSERC

Fonds de Recherche du Québec - Nature et Technologies

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3