Performance evaluation of a staggered three-layer DOI PET detector using a 1 mm LYSO pitch with PETsys TOFPET2 ASIC: comparison of HAMAMATSU and KETEK SiPMs

Author:

Binder Tim,Kang Han GyuORCID,Nitta Munetaka,Schneider Florian,Yamaya Taiga,Parodi KatiaORCID,Wiest Florian,Thirolf Peter GORCID

Abstract

Abstract In this study, we propose a staggered three-layer depth-of-interaction (DOI) detector with a 1 mm crystal pitch and 19.8 mm total crystal thickness for a high-resolution and high-sensitivity small animal in-beam PET scanner. A three-layered stacked LYSO scintillation array (0.9 × 0.9 × 6.6 mm3 crystals, 23 × 22 mm2 surface area) read out by a SiPM array (8 × 8 channels, 3 × 3 mm2 active area/channel and 50 μm microcell size) with data acquisition, signal processing and digitization performed using the PETsys Electronics Evaluations kit (based on the TOFPET v2c ASIC) builds a DOI LYSO detector block. The performance of the DOI detector was evaluated in terms of crystal resolvability, energy resolution, and coincidence resolving time (CRT). A comparative performance evaluation of the staggered three-layer LYSO block was conducted with two different SiPM arrays from KETEK and HAMAMATSU. 100% (KETEK) and 99.8% (HAMAMATSU) of the crystals were identified, by using a flood irradiation the front- and back-side. The average energy resolutions for the 1st, 2nd, and 3rd layers were 16.5 (±2.3)%, 20.9(±4.0)%, and 32.7 (±21.0)% (KETEK) and 19.3 (±3.5)%, 21.2 (±4.1)%, and 26.6 (±10.3)% (HAMAMATSU) for the used SiPM arrays. The measured CRTs (FWHM) for the 1st, 2nd, and 3rd layers were 532 (±111) ps, 463 (±108) ps, and 447 (±111) ps (KETEK) and 402 (±46) ps, 392 (±54) ps, and 408 (±196) ps (HAMAMATSU). In conclusion, the performance of the staggered three-layer DOI detector with 1 mm LYSO pitch and 19.8 mm total crystal thickness was fully characterized. The feasibility of a highly performing readout of a high resolution DOI PET detector via SiPM arrays from KETEK and HAMAMATSU employing the PETsys TOFPET v2c ASIC could be demonstrated.

Funder

QST President’s Strategic Grant

Bayerische Forschungsstiftung

H2020 European Research Council

H2020 Research Infrastructures

Publisher

IOP Publishing

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference32 articles.

1. New developments in positron scintigraphy and the application of cyclotron produced positron emitters;Brownell,1969

2. The new opportunities for high time resolution clinical TOF PET;Conti;Clin. Transl. Imaging,2019

3. TOFPET2: a high-performance ASIC for time and amplitude measurements of SiPM signals in time-of-flight applications;Di Francesco;J. Instrum.,2016

4. CeBr3 for time-of-flight PET;Glodo,2006

5. High-frequency SiPM readout advances measured coincidence time resolution limits in TOF-PET;Grundacker;Phys. Med. Biol.,2019

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3