Investigating the accuracy of co-registered ionoacoustic and ultrasound images in pulsed proton beams

Author:

Lascaud JulieORCID,Dash Pratik,Wieser Hans-PeterORCID,Kalunga Ronaldo,Würl MatthiasORCID,Assmann Walter,Parodi KatiaORCID

Abstract

Abstract The sharp spatial and temporal dose gradients of pulsed ion beams result in an acoustic emission (ionoacoustics), which can be used to reconstruct the dose distribution from measurements at different positions. The accuracy of range verification from ionoacoustic images measured with an ultrasound linear array configuration is investigated both theoretically and experimentally for monoenergetic proton beams at energies relevant for pre-clinical studies (20 and 22 MeV). The influence of the linear sensor array arrangement (length up to 4 cm and number of elements from 5 to 200) and medium properties on the range estimation accuracy are assessed using time-reversal reconstruction. We show that for an ideal homogeneous case, the ionoacoustic images enable a range verification with a relative error lower than 0.1%, however, with limited lateral dose accuracy. Similar results were obtained experimentally by irradiating a water phantom and taking into account the spatial impulse response (geometry) of the acoustic detector during the reconstruction of pressures obtained by moving laterally a single-element transducer to mimic a linear array configuration. Finally, co-registered ionoacoustic and ultrasound images were investigated using silicone inserts immersed in the water phantom across the proton beam axis. By accounting for the sensor response and speed of sound variations (deduced from co-registration with ultrasound images) the accuracy is improved to a few tens of micrometers (relative error less than to 0.5%), confirming the promise of ongoing developments for ionoacoustic range verification in pre-clinical and clinical proton therapy applications.

Funder

Deutsche Forschungsgemeinschaft

Centre for Advanced Laser Applications

European Research Council

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3