Low-dose PET image noise reduction using deep learning: application to cardiac viability FDG imaging in patients with ischemic heart disease

Author:

Ladefoged Claes NøhrORCID,Hasbak Philip,Hornnes Charlotte,Højgaard Liselotte,Andersen Flemming Littrup

Abstract

Abstract Introduction. Cardiac [18F]FDG-PET is widely used for viability testing in patients with chronic ischemic heart disease. Guidelines recommend injection of 200–350 MBq [18F]FDG, however, a reduction of radiation exposure has become increasingly important, but might come at the cost of reduced diagnostic accuracy due to the increased noise in the images. We aimed to explore the use of a common deep learning (DL) network for noise reduction in low-dose PET images, and to validate its accuracy using the clinical quantitative metrics used to determine cardiac viability in patients with ischemic heart disease. Methods. We included 168 patients imaged with cardiac [18F]FDG-PET/CT. We simulated a reduced dose by keeping counts at thresholds 1% and 10%. 3D U-net with five blocks was trained to de-noise full PET volumes (128 × 128 × 111). The low-dose and de-noised images were compared in Corridor4DM to the full-dose PET images. We used the default segmentation of the left ventricle to extract the quantitative metrics end-diastolic volume (EDV), end-systolic volume (ESV), and left ventricular ejection fraction (LVEF) from the gated images, and FDG defect extent from the static images. Results. Our de-noising models were able to recover the PET signal for both the static and gated images in either dose-reduction. For the 1% low-dose images, the error is most pronounced for EDV and ESV, where the average underestimation is 25%. No bias was observed using the proposed DL de-noising method. De-noising minimized the outliers found for the 1% and 10% low-dose measurements of LVEF and extent. Accuracy of differential diagnosis based on LVEF threshold was highly improved after de-noising. Conclusion. A significant dose reduction can be achieved for cardiac [18F]FDG images used for viability testing in patients with ischemic heart disease without significant loss of diagnostic accuracy when using our DL model for noise reduction. Both 1% and 10% dose reductions are possible with clinically quantitative metrics comparable to that obtained with a full dose.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3