Modeling intra-fractional abdominal configuration changes using breathing motion-corrected radial MRI

Author:

Liu LianliORCID,Johansson AdamORCID,Cao Yue,Kashani Rojano,Lawrence Theodore S,Balter James M

Abstract

Abstract Abdominal organ motions introduce geometric uncertainties to gastrointestinal radiotherapy. This study investigated slow drifting motion induced by changes of internal anatomic organ arrangements using a 3D radial MRI sequence with a scan length of 20 min. Breathing motion and cyclic GI motion were first removed through multi-temporal resolution image reconstruction. Slow drifting motion analysis was performed using an image time series consisting of 72 image volumes with a temporal sampling rate of 17 s. B-spline deformable registration was performed to align image volumes of the time series to a reference volume. The resulting deformation fields were used for motion velocity evaluation and patient-specific motion model construction through principal component analysis (PCA). Geometric uncertainties introduced by slow drifting motion were assessed by Hausdorff distances between unions of organs at risk (OARs) at different motion states and reference OAR contours as well as probabilistic distributions of OARs predicted using the PCA model. Thirteen examinations from 11 patients were included in this study. The averaged motion velocities ranged from 0.8 to 1.9 mm min−1, 0.7 to 1.6 mm min−1, 0.6 to 2.0 mm min−1 and 0.7 to 1.4 mm min−1 for the small bowel, colon, duodenum and stomach respectively; the averaged Hausdorff distances were 5.6 mm, 5.3 mm, 5.1 mm and 4.6 mm. On average, a margin larger than 4.5 mm was needed to cover a space with OAR occupancy probability higher than 55%. Temporal variations of geometric uncertainties were evaluated by comparing across four 5 min sub-scans extracted from the full scan. Standard deviations of Hausdorff distances across sub-scans were less than 1 mm for most examinations, indicating stability of relative margin estimates from separate time windows. These results suggested slow drifting motion of GI organs is significant and geometric uncertainties introduced by such motion should be accounted for during radiotherapy planning and delivery.

Funder

NIH

Publisher

IOP Publishing

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3