Radiomic analysis for early differentiation of lung cancer recurrence from fibrosis in patients treated with lung stereotactic ablative radiotherapy

Author:

Kunkyab Tenzin,Mou Benjamin,Jirasek Andrew,Haston Christina,Andrews Jeff,Thomas Steven,Hyde Derek

Abstract

Abstract Objective. The development of radiation-induced fibrosis after stereotactic ablative radiotherapy (SABR) can obscure follow-up images and delay detection of a local recurrence in early-stage lung cancer patients. The objective of this study was to develop a radiomics model for computer-assisted detection of local recurrence and fibrosis for an earlier timepoint (<1 year) after the SABR treatment. Approach. This retrospective clinical study included CT images (n = 107) of 66 patients treated with SABR. A z-score normalization technique was used for radiomic feature standardization across scanner protocols. The training set for the radiomics model consisted of CT images (66 patients; 22 recurrences and 44 fibrosis) obtained at 24 months (median) follow-up. The test set included CT-images of 41 patients acquired at 5–12 months follow-up. Combinations of four widely used machine learning techniques (support vector machines, gradient boosting, random forests (RF), and logistic regression) and feature selection methods (Relief feature scoring, maximum relevance minimum redundancy, mutual information maximization, forward feature selection, and LASSO) were investigated. Pyradiomics was used to extract 106 radiomic features from the CT-images for feature selection and classification. Main results. An RF + LASSO model scored the highest in terms of AUC (0.87) and obtained a sensitivity of 75% and a specificity of 88% in identifying a local recurrence in the test set. In the training set, 86% accuracy was achieved using five-fold cross-validation. Delong’s test indicated that AUC achieved by the RF+LASSO is significantly better than 11 other machine learning models presented here. The top three radiomic features: interquartile range (first order), Cluster Prominence (GLCM), and Autocorrelation (GLCM), were revealed as differentiating a recurrence from fibrosis with this model. Significance. The radiomics model selected, out of multiple machine learning and feature selection algorithms, was able to differentiate a recurrence from fibrosis in earlier follow-up CT-images with a high specificity rate and satisfactory sensitivity performance.

Funder

Moss Rock Park Foundation

BC Cancer Foundation

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference38 articles.

1. CT radiomics signature of tumor and peritumoral lung parenchyma to predict nonsmall cell lung cancer postsurgical recurrence risk;Akinci D’Antonoli;Acad. Radiol.,2020

2. FSinR: an exhaustive package for feature selection;Aragón-Royón,2020

3. SMOTE: synthetic minority over-sampling technique;Chawla;J. Artif. Int. Res.,2002

4. Safety and effectiveness of stereotactic ablative radiotherapy for ultra-central lung lesions: a systematic review;Chen;J. Thorac. Oncol.,2019

5. Feature selection tutorial with python examples;Cunningham,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3