SuPART: supervised projective adapted resonance theory for automatic quality assurance approval of radiotherapy treatment plans

Author:

Kamran HootanORCID,Aleman Dionne MORCID,McIntosh Chris,Purdie Thomas GORCID

Abstract

Abstract Radiotherapy is a common treatment modality for the treatment of cancer, where treatments must be carefully designed to deliver appropriate dose to targets while avoiding healthy organs. The comprehensive multi-disciplinary quality assurance (QA) process in radiotherapy is designed to ensure safe and effective treatment plans are delivered to patients. However, the plan QA process is expensive, often time-intensive, and requires review of large quantities of complex data, potentially leading to human error in QA assessment. We therefore develop an automated machine learning algorithm to identify ‘acceptable’ plans (plans that are similar to historically approved plans) and ‘unacceptable’ plans (plans that are dissimilar to historically approved plans). This algorithm is a supervised extension of projective adaptive resonance theory, called SuPART, that learns a set of distinctive features, and considers deviations from them indications of unacceptable plans. We test SuPART on breast and prostate radiotherapy datasets from our institution, and find that SuPART outperforms common classification algorithms in several measures of accuracy. When no falsely approved plans are allowed, SuPART can correctly auto-approve 34% of the acceptable breast and 32% of the acceptable prostate plans, and can also correctly reject 53% of the unacceptable breast and 56% of the unacceptable prostate plans. Thus, usage of SuPART to aid in QA could potentially yield significant time savings.

Funder

Canadian Institutes of Health Research

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3