Coupling speckle noise suppression with image classification for deep-learning-aided ultrasound diagnosis

Author:

Wang RuixinORCID,Liu Xiaohui,Tan Guoping

Abstract

Abstract Objective. During deep-learning-aided (DL-aided) ultrasound (US) diagnosis, US image classification is a foundational task. Due to the existence of serious speckle noise in US images, the performance of DL models may be degraded. Pre-denoising US images before their use in DL models is usually a logical choice. However, our investigation suggests that pre-speckle-denoising is not consistently advantageous. Furthermore, due to the decoupling of speckle denoising from the subsequent DL classification, investing intensive time in parameter tuning is inevitable to attain the optimal denoising parameters for various datasets and DL models. Pre-denoising will also add extra complexity to the classification task and make it no longer end-to-end. Approach. In this work, we propose a multi-scale high-frequency-based feature augmentation (MSHFFA) module that couples feature augmentation and speckle noise suppression with specific DL models, preserving an end-to-end fashion. In MSHFFA, the input US image is first decomposed to multi-scale low-frequency and high-frequency components (LFC and HFC) with discrete wavelet transform. Then, multi-scale augmentation maps are obtained by computing the correlation between LFC and HFC. Last, the original DL model features are augmented with multi-scale augmentation maps. Main results. On two public US datasets, all six renowned DL models exhibited enhanced F1-scores compared with their original versions (by 1.31%–8.17% on the POCUS dataset and 0.46%–3.89% on the BLU dataset) after using the MSHFFA module, with only approximately 1% increase in model parameter count. Significance. The proposed MSHFFA has broad applicability and commendable efficiency and thus can be used to enhance the performance of DL-aided US diagnosis. The codes are available at https://github.com/ResonWang/MSHFFA.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3