Vortex dynamics and transport phenomena in stenotic aortic models using Echo-PIV

Author:

Brum JavierORCID,Bernal Miguel,Barrere Nicasio,Negreira Carlos,Cabeza Cecilia

Abstract

Abstract Atherosclerosis is the most fatal cardiovascular disease. As disease progresses, stenoses grow inside the arteries blocking their lumen and altering blood flow. Analysing flow dynamics can provide a deeper insight on the stenosis evolution. In this work we combined Eulerian and Lagrangian descriptors to analyze blood flow dynamics and fluid transport in stenotic aortic models with morphology, mechanical and optical properties close to those of real arteries. To this end, vorticity, particle residence time (PRT), particle's final position (FP) and finite time Lyapunov's exponents (FTLE) were computed from the experimental fluid velocity fields acquired using ultrasonic particle imaging velocimetry (Echo-PIV). For the experiments, CT-images were used to create morphological realistic models of the descending aorta with 0%, 35% and 50% occlusion degree with same mechanical properties as real arteries. Each model was connected to a circuit with a pulsatile programmable pump which mimics physiological flow and pressure conditions. The pulsatile frequency was set to ≈0.9 Hz (55 bpm) and the upstream peak Reynolds number (Re) was changed from 1100 to 2000. Flow in the post-stenotic region was composed of two main structures: a high velocity jet over the stenosis throat and a recirculation region behind the stenosis where vortex form and shed. We characterized vortex kinematics showing that vortex propagation velocity increases with Re. Moreover, from the FTLE field we identified Lagrangian coherent structures (i.e. material barriers) that dictate transport behind the stenosis. The size and strength of those barriers increased with Re and the occlusion degree. Finally, from the PRT and FP maps, we showed that independently of Re, the same amount of fluid remains on the stenosis over more than a pulsatile period.

Funder

Departamento Administrativo de Ciencia, Tecnología e Innovación

Comisión Sectorial de Investigación Científica

Publisher

IOP Publishing

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3