Fast mixed integer optimization (FMIO) for high dose rate brachytherapy

Author:

Antaki Majd,L Deufel Christopher,Enger Shirin A

Abstract

Abstract The purpose of this work was to develop an efficient quadratic mixed integer programming algorithm for high dose rate (HDR) brachytherapy treatment planning problems and integrate the algorithm into an open-source Monte Carlo based treatment planning software, RapidBrachyMCTPS. The mixed-integer algorithm yields a globally optimum solution to the dose volume histogram (DVH) based problem and, unlike other methods, is not susceptible to local minimum trapping. A hybrid linear-quadratic penalty model coupled to a mixed integer programming model was used to optimize treatment plans for 10 prostate cancer patients. Dose distributions for each dwell position were calculated with RapidBrachyMCTPS with type A uncertainties less than 0.2% in voxels within the planning target volume (PTV). The optimization process was divided into two parts. First, the data was preprocessed, in which the problem size was reduced by eliminating voxels that had negligible impact on the solution (e.g. far from the dwell position). Second, the best combination of dwell times to obtain a plan with the highest score was found. The dwell positions and dose volume constraints were used as input to a commercial mixed integer optimizer (Gurobi Optimization, Inc.). A penalty-based criterion was adopted for the scoring. The voxel-reduction technique successfully reduced the problem size by an average of 91%, without loss of quality. The preprocessing of the optimization process required on average 4 s and solving for the global maximum required on average 33 s. The total optimization time averaged 37 s, which is a substantial improvement over the ∼15 min optimization time reported in published literature. The plan quality was evaluated by evaluating dose volume metrics, including PTV D 90, rectum and bladder D 1cc and urethra D 0.1cc . In conclusion, fast mixed integer optimization is an order of magnitude faster than current mixed-integer approaches for solving HDR brachytherapy treatment planning problems with DVH based metrics.

Funder

Collaborative Health Research Projects

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3