ACnerf: enhancement of neural radiance field by alignment and correction of pose to reconstruct new views from a single x-ray*

Author:

Sun MengchengORCID,Zhu YuORCID,Li HangyuORCID,Ye Jiongyao,Li Nan

Abstract

Abstract Objective. Computed tomography (CT) is widely used in medical research and clinical diagnosis. However, acquiring CT data requires patients to be exposed to considerable ionizing radiance, leading to physical harm. Recent studies have considered using neural radiance field (NERF) techniques to infer the full-view CT projections from single-view x-ray projection, thus aiding physician judgment and reducing Radiance hazards. This paper enhances this technique in two directions: (1) accurate generalization capabilities for control models. (2) Consider different ranges of viewpoints. Approach. Building upon generative radiance fields (GRAF), we propose a method called ACnerf to enhance the generalization of the NERF through alignment and pose correction. ACnerf aligns with a reference single x-ray by utilizing a combination of positional encoding with Gaussian random noise (latent code) obtained from GRAF training. This approach avoids compromising the 3D structure caused by altering the generator. During inference, a pose judgment network is employed to correct the pose and optimize the rendered viewpoint. Additionally, when generating a narrow range of views, ACnerf employs frequency-domain regularization to fine-tune the generator and achieve precise projections. Main results. The proposed ACnerf method surpasses the state-of-the-art NERF technique in terms of rendering quality for knee and chest data with varying contrasts. It achieved an average improvement of 2.496 dB in PSNR and 41% in LPIPS for 0°–360° projections. Additionally, for −15° to 15° projections, ACnerf achieved an average improvement of 0.691 dB in PSNR and 25.8% in LPIPS. Significance. With adjustments in alignment, inference, and rendering range, our experiments and evaluations on knee and chest data of different contrasts show that ACnerf effectively reduces artifacts and aberrations in the new view. ACnerf’s ability to recover more accurate 3D structures from single x-rays has excellent potential for reducing damage from ionising radiation in clinical diagnostics.

Funder

Science and Technology Commission of Shanghai Municipality

Shanghai Municipal Science and Technology Major Project

Publisher

IOP Publishing

Reference53 articles.

1. Validation of predicted patellofemoral mechanics in a finite element model of the healthy and cruciate-deficient knee;Ali;J. Biomech.,2016

2. Mip-nerf: a multiscale representation for anti-aliasing neural radiance fields;Barron,2021

3. Mip-nerf 360: unbounded anti-aliased neural radiance fields;Barron,2022

4. Segment anything in 3D with nerfs;Cen,2023

5. Mvsnerf: fast generalizable radiance field reconstruction from multi-view stereo;Chen,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3