Abstract
Abstract
Objective. Magnetic particle imaging (MPI) is a novel imaging modality. It is crucial to acquire accurate localization of the superparamagnetic iron oxide nanoparticles distributions in MPI. However, the spatial resolution of unidirectional Cartesian trajectory MPI exhibits anisotropy, which blurs the boundaries of MPI images and makes precise localization difficult. In this paper, we propose an anisotropic edge-preserving network (AEP-net) to alleviate the anisotropic resolution of MPI. Methods. AEP-net resolve the resolution anisotropy by constructing an asymmertic convolution. To recover the edge information, we design the uncertainty region module. In addition, we evaluated the performance of the proposed AEP-net model by using simulations and experimental data. Results. The results show that the AEP-net model alleviates the anisotropy of the unidirectional Cartesian trajectory and preserves edge details in the MPI image. By comparing the visualization results and the metrics, we demonstrate that our method is superior to other methods. Significance. The proposed method produces accurate visualization in unidirectional Cartesian devices and promotes accurate quantization, which promote the biomedical applications using MPI.
Funder
the National Key Research and Development Program of China under Grant
the National Natural Science Foundation of China under Grant
CAS Youth Innovation Promotion Association under Grant
CAS Key Technology Talent Program
Guangdong Key Research and Development Program of China
The Project of High-Level Talents Team Introduction in Zhuhai City
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献