Surface-based anthropomorphic bone structures for use in high-resolution simulated medical imaging

Author:

Sauer Thomas J,McCabe Cindy,Abadi EhsanORCID,Samei Ehsan,Segars W Paul

Abstract

Abstract Objective. Virtual imaging trials enable efficient assessment and optimization of medical image devices and techniques via simulation rather than physical studies. These studies require realistic, detailed ground-truth models or phantoms of the relevant anatomy or physiology. Anatomical structures within computational phantoms are typically based on medical imaging data; however, for small and intricate structures (e.g. trabecular bone), it is not reasonable to use existing clinical data as the spatial resolution of the scans is insufficient. In this study, we develop a mathematical method to generate arbitrary-resolution bone structures within virtual patient models (XCAT phantoms) to model the appearance of CT-imaged trabecular bone. Approach. Given surface definitions of a bone, an algorithm was implemented to generate stochastic bicontinuous microstructures to form a network to define the trabecular bone structure with geometric and topological properties indicative of the bone. For an example adult male XCAT phantom (50th percentile in height and weight), the method was used to generate the trabecular structure of 46 chest bones. The produced models were validated in comparison with published properties of bones. The utility of the method was demonstrated with pilot CT and photon-counting CT simulations performed using the accurate DukeSim CT simulator on the XCAT phantom containing the detailed bone models. Main results. The method successfully generated the inner trabecular structure for the different bones of the chest, having quantiative measures similar to published values. The pilot simulations showed the ability of photon-counting CT to better resolve the trabecular detail emphasizing the necessity for high-resolution bone models. Significance. As demonstrated, the developed tools have great potential to provide ground truth simulations to access the ability of existing and emerging CT imaging technology to provide quantitative information about bone structures.

Funder

National Institute of Biomedical Imaging and Bioengineering

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference76 articles.

1. DukeSim: a realistic, rapid, and scanner-specific simulation framework in computed tomography;Abadi;IEEE Trans. Med. Imaging,2018a

2. COPD quantifications via CT imaging: ascertaining the effects of acquisition protocol using virtual imaging trial;Abadi,2021

3. Optimization of energy thresholds in photon-counting CT via a virtual clinical trial;Abadi,2020

4. Trade-off between spatial details and motion artifact in multi-detector CT: a virtual clinical trial with 4D textured human models;Abadi,2019a

5. Modeling ‘Textured’ bones in virtual human phantoms;Abadi;IEEE Trans. Radiat. Plasma Med. Sci.,2019b

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3