A flexible 8.5 MHz litz wire receive array for field-cycling imaging

Author:

Stormont Robert S,Davies Gareth R,Ross P James,Lurie David J,Broche Lionel MORCID

Abstract

Abstract Objectives. Low frequency coils present unique challenges as loop losses, component losses, and the supporting electronics can significantly degrade the signal-to-noise ratio (SNR). SNR may already be a limiting factor with MRI at low field (and frequency), therefore the minimization of additional loss is particularly important. If interactions between loops are managed, array coils can provide increased SNR, coverage, and potentially imaging speed. In this work, we investigate methods to characterise and preserve SNR from a low frequency coil array, allowing a more geometrically conforming array for quick, no-tune application with various anatomies. Approach. Single and multi-turn, 16.2 cm diameter litz wire loops were constructed and characterised for losses under various loading conditions. Low noise preamplifiers were acquired and characterized, as well as interfacing electronics were developed and evaluated. A bench level SNR test was implemented to observe the effects of tuning and loading on individual coils. The results were used to select a design for construction of a 6-channel, flex array coil. Main results. Ultra fine strand litz wire exhibited lower losses than equivalent diameter solid wire which should translate to improved SNR and provides the mechanical flexibility needed in a conforming array. Single turn loop losses were dominant under all loading conditions; however, 2 and 3 turn loops were body loss dominated under modest loading conditions. Preamplifier blocking achieved was well short of our design goal and critical overlaps became necessary for coil-to-coil interaction control. Our finished array, a 3-channel posterior array coil and a 3-channel anterior array coil, conforms nicely to various anatomies and is providing consistent results in various volunteer study trials. Significance. Receive coils are challenging at low fields as loop losses often limit the final SNR. This is exacerbated in an array coil as loops may be smaller and not coupled well to the body. In this work we have demonstrated that body loss dominance is possible with 16.2 cm loops at 8.5 MHz. We have optimized, built, and tested low noise interfacing electronics and characterized the SNR penalties as the tuning and loading is varied, a key parameter in a geometrically flexible array designed for rapid setup. The resultant 6-channel, general-purpose array is supporting various Field-Cycling Imaging studies where body habitus and anatomies require a flexible, adaptable array coil which can be quickly positioned and utilized.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference29 articles.

1. Lumped and distributed lattice-type LC-baluns;Bakalski,2002

2. Surface YBa2Cu3O7 receive coils for low field MRI;Bracanovic;IEEE-TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY,2001

3. A whole-body fast field-cycling scanner for clinical molecular imaging studies;Broche;Sci. Rep.,2019

4. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz;Gabriel;Phys. Med. Biol.,1996

5. coil loading measurements between 1 and 50 MHz to guide field-cycled MRI system design;Gilbert;Concepts Magn. Reson. B,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3