Response of diamond detectors in ultra-high dose-per-pulse electron beams for dosimetry at FLASH radiotherapy

Author:

Kranzer R,Schüller AORCID,Bourgouin AORCID,Hackel T,Poppinga DORCID,Lapp M,Looe H K,Poppe B

Abstract

Abstract Objective. With increasing investigation of the so-called FLASH effect, the need for accurate real time dosimetry for ultra-high dose rates is also growing. Considering the ultra-high dose-per-pulse (DPP) necessary to produce the ultra-high dose rates for investigations of the FLASH effect, real time dosimetry is a major challenge. In particular, vented ionization chambers, as used for dosimetry in conventional radiotherapy, show significant deviations from linearity with increasing DPP. This is due to recombination losses in the sensitive air volume. Solid state detectors could be an alternative. Due to their good stability of the response with regard to the accumulated dose, diamond detectors such as the microDiamond could be suitable here. The aims of this work are to investigate the response of microDiamond and adapted microDiamond prototypes in ultra-high DPP electron beams, to understand the underlying effects and to draw conclusions for further detector developments. Approach. For the study, an electron beam with a DPP up to 6.5 Gy and a pulse duration of 2.5 μs was used to fulfill the conditions under which the FLASH effect was observed. As a dose rate-independent reference, alanine dosimeters were used. Main Results. It has been shown that the commercially available microDiamond detectors have limitations in terms of linearity at ultra-high DPP. But this is not an intrinsic limitation of the detector principle. The deviations from linearity were correlated with the series resistance and the sensitivity. It could be shown that the linear range can be extended towards ultra-high DPP range by reducing the sensitivity in combination with a low series resistance of the detectors. Significance. The work shows that synthetic single crystal diamond detectors working as Schottky photodiodes are in principle suitable for FLASH-RT dosimetry at electron linear accelerators.

Funder

European Association of National Metrology Institutes

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The synchronous detection technique for the accurate monitoring of high-energy pulsed X-rays;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-02

2. Diamond-based detection systems for tomorrow's precision dosimetry;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-02

3. Simulation study of protoacoustics as a real‐time in‐line dosimetry tool for FLASH proton therapy;Medical Physics;2023-12-20

4. The clinical prospect of FLASH radiotherapy;Radiation Medicine and Protection;2023-12

5. Charge collection efficiency of commercially available parallel-plate ionisation chambers in ultra-high dose-per-pulse electron beams;Physics in Medicine & Biology;2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3