A comparative study of NaI(Tl), CeBr3, and CZT for use in a real-time simultaneous nuclear and fluoroscopic dual-layer detector

Author:

Koppert Wilco J C,Dietze Martijn M AORCID,van der Velden SandraORCID,Steenbergen J H Leo,de Jong Hugo W A M

Abstract

Abstract Simultaneous acquisition of nuclear and fluoroscopic projections could be of benefit for image-guided radionuclide administration. A gamma camera positioned behind an x-ray flat panel detector can accomplish such simultaneous acquisition, but the gamma camera performance suffers from the intense x-ray dose. A regular NaI(Tl)-based camera has nominal performance up to 0.02 nGy dose per pulse, whereas 10 nGy dose is expected for our foreseen applications. We evaluated the performance of CeBr3- and CZT-based detectors and investigated a cost-effective improvement of a regular NaI(Tl)-based camera by the introduction of a high-pass filter and shorting circuit. A CeBr3-based detector was exposed to 5 mGy x-ray dose and the resulting light emission was measured over time to quantify the crystal afterglow, allowing comparison with a previously measured NaI(Tl)-based detector. The NaI(Tl)-, CeBr3- and CZT-based detectors were exposed to x-ray pulse sequences with dose from 0.06 to 60 nGy, while being irradiated with a gamma source. The mean gamma energy and energy resolution in between the x-ray pulses were measured as a reference of the detector performance. The afterglow signal after 3 ms was 14.1% for the NaI(Tl)-based detector, whereas for the CeBr3-based detector it was only 0.1%. The limits for a proper functioning detectors are 0.32 nGy for the NaI(Tl)-based detector with high-pass filter and shorting circuit and 18.94 nGy for the one with CeBr3. No energy degradation was observed for the CZT module in the studied dose range. The performance of regular NaI(Tl)-based gamma cameras deteriorates when exposed to high x-ray doses. CeBr3 and CZT are much better suited for introduction into a dual-layer detector but have high associated costs. Addition of a high-pass filter and shorting circuit into the PMT of a NaI(Tl)-based detector is a cost-effective solution that works well for low dose levels.

Funder

Stichting voor de Technische Wetenschappen

H2020 European Research Council

Publisher

IOP Publishing

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference17 articles.

1. Respiratory motion compensation in interventional liver SPECT using simultaneous fluoroscopic and nuclear imaging;Dietze;Med. Phys.

2. Performance of a dual-layer scanner for hybrid SPECT/CBCT;Dietze;Phys. Med. Biol.,2019

3. CeBr3 as a room-temperature, high-resolution gamma-ray detector;Guss;Nucl. Instrum. Methods Phys. Res. A,2009

4. Spectral resolution and high-flux capability tradeoffs in CdTe detectors for clinical CT;Hsieh;Med. Phys.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3