Automatic ultrasound diagnosis of thyroid nodules: a combination of deep learning and KWAK TI-RADS

Author:

Zhang Jingqi,Wang QingsongORCID,Zhao Jingwen,Yu HuiORCID,Wang Fei,Zhang Jie

Abstract

Abstract Objective. There has been a considerable amount of computer-aided diagnosis (CAD) methods highlighted in the field of ultrasonic examination (USE) of thyroid nodules. However, few researches focused on the automatic risk classification, which was the basis for determining whether fine needle aspiration (FNA) was needed. The aim of this work was to implement automatic risk level assessment of thyroid nodules. Approach. Firstly, 1862 cases of thyroid nodules with the results of USE and FNA were collected as the dataset. Then, an improved U-Net++ model was utilized for segmenting thyroid nodules in ultrasound images automatically. Finally, the segmentation result was imported into a multi-task convolutional neural network (MT-CNN), the design of which was based on the clinical guideline called KWAK TI-RADS. Apart from the category of benign and malignant, the MT-CNN also exported the classification result of four malignant features, solid component (SC), hypoechogenicity or marked hypoechogenicity (HMH), microlobulated or irregular margin (MIM), microcalcification (MC), which were used for counting the risk level in KWAK TI-RADS. Main results. The performance of the improved U-Net++ was evaluated on our test set, including 302 cases. The Dice coefficient and intersection over union reached 0.899, 0.816, respectively. The classification accuracy rates of SC, HMH, MIM, MC, were 94.5%, 92.8%, 86.1%, 88.9%, while the false positive (FP) rate was 6.0%, 5.6%, 10.6%, 12.9% respectively. As for the category of benign and malignant, the precision and recall rates were 93.7% and 94.4%. Significance. The proposed CAD method showed favourable performance in the diagnosis of thyroid nodules. Compared with other methods, it could provide reports closer to clinical practice for doctors.

Funder

Ultrasound guided microwave ablation of thyroid nodules

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3