Accurate segmentation of breast tumor in ultrasound images through joint training and refined segmentation

Author:

Shen XiaoyanORCID,Wu Xinran,Liu Ruibo,Li Hong,Yin Jiandong,Wang Liangyu,Ma HeORCID

Abstract

Abstract Objective. This paper proposes an automatic breast tumor segmentation method for two-dimensional (2D) ultrasound images, which is significantly more accurate, robust, and adaptable than common deep learning models on small datasets. Approach. A generalized joint training and refined segmentation framework (JR) was established, involving a joint training module (J module ) and a refined segmentation module (R module ). In J module , two segmentation networks are trained simultaneously, under the guidance of the proposed Jocor for Segmentation (JFS) algorithm. In R module , the output of J module is refined by the proposed area first (AF) algorithm, and marked watershed (MW) algorithm. The AF mainly reduces false positives, which arise easily from the inherent features of breast ultrasound images, in the light of the area, distance, average radical derivative (ARD) and radical gradient index (RGI) of candidate contours. Meanwhile, the MW avoids over-segmentation, and refines segmentation results. To verify its performance, the JR framework was evaluated on three breast ultrasound image datasets. Image dataset A contains 1036 images from local hospitals. Image datasets B and C are two public datasets, containing 562 images and 163 images, respectively. The evaluation was followed by related ablation experiments. Main results. The JR outperformed the other state-of-the-art (SOTA) methods on the three image datasets, especially on image dataset B. Compared with the SOTA methods, the JR improved true positive ratio (TPR) and Jaccard index (JI) by 1.5% and 3.2%, respectively, and reduces (false positive ratio) FPR by 3.7% on image dataset B. The results of the ablation experiments show that each component of the JR matters, and contributes to the segmentation accuracy, particularly in the reduction of false positives. Significance. This study successfully combines traditional segmentation methods with deep learning models. The proposed method can segment small-scale breast ultrasound image datasets efficiently and effectively, with excellent generalization performance.

Funder

the Guizhou Province Science and Technology Project

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3