Semi-supervised lung adenocarcinoma histopathology image classification based on multi-teacher knowledge distillation

Author:

Wang QixuanORCID,Zhang Yanjun,Lu Jun,Li CongshengORCID,Zhang Yungang

Abstract

Abstract Objective. In this study, we propose a semi-supervised learning (SSL) scheme using a patch-based deep learning (DL) framework to tackle the challenge of high-precision classification of seven lung tumor growth patterns, despite having a small amount of labeled data in whole slide images (WSIs). This scheme aims to enhance generalization ability with limited data and reduce dependence on large amounts of labeled data. It effectively addresses the common challenge of high demand for labeled data in medical image analysis. Approach. To address these challenges, the study employs a SSL approach enhanced by a dynamic confidence threshold mechanism. This mechanism adjusts based on the quantity and quality of pseudo labels generated. This dynamic thresholding mechanism helps avoid the imbalance of pseudo-label categories and the low number of pseudo-labels that may result from a higher fixed threshold. Furthermore, the research introduces a multi-teacher knowledge distillation (MTKD) technique. This technique adaptively weights predictions from multiple teacher models to transfer reliable knowledge and safeguard student models from low-quality teacher predictions. Main results. The framework underwent rigorous training and evaluation using a dataset of 150 WSIs, each representing one of the seven growth patterns. The experimental results demonstrate that the framework is highly accurate in classifying lung tumor growth patterns in histopathology images. Notably, the performance of the framework is comparable to that of fully supervised models and human pathologists. In addition, the framework’s evaluation metrics on a publicly available dataset are higher than those of previous studies, indicating good generalizability. Significance. This research demonstrates that a SSL approach can achieve results comparable to fully supervised models and expert pathologists, thus opening new possibilities for efficient and cost-effective medical images analysis. The implementation of dynamic confidence thresholding and MTKD techniques represents a significant advancement in applying DL to complex medical image analysis tasks. This advancement could lead to faster and more accurate diagnoses, ultimately improving patient outcomes and fostering the overall progress of healthcare technology.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference50 articles.

1. Accuracy comparison of different batch size for a supervised machine learning task with image classification;Aldin,2022

2. A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications;Alzubaidi;J. Big Data,2023

3. Pseudo-labeling and confirmation bias in deep semi-supervised learning;Arazo,2020

4. Do deep nets really need to be deep?;Ba,2014

5. Updates in grading and invasion assessment in lung adenocarcinoma;Borczuk;Mod. Pathol.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3