Real-time liver tumor localization via combined surface imaging and a single x-ray projection

Author:

Shao Hua-Chieh,Li Yunxiang,Wang JingORCID,Jiang Steve,Zhang YouORCID

Abstract

Abstract Objective. Real-time imaging, a building block of real-time adaptive radiotherapy, provides instantaneous knowledge of anatomical motion to drive delivery adaptation to improve patient safety and treatment efficacy. The temporal constraint of real-time imaging (<500 milliseconds) significantly limits the imaging signals that can be acquired, rendering volumetric imaging and 3D tumor localization extremely challenging. Real-time liver imaging is particularly difficult, compounded by the low soft tissue contrast within the liver. We proposed a deep learning (DL)-based framework (Surf-X-Bio), to track 3D liver tumor motion in real-time from combined optical surface image and a single on-board x-ray projection. Approach. Surf-X-Bio performs mesh-based deformable registration to track/localize liver tumors volumetrically via three steps. First, a DL model was built to estimate liver boundary motion from an optical surface image, using learnt motion correlations between the respiratory-induced external body surface and liver boundary. Second, the residual liver boundary motion estimation error was further corrected by a graph neural network-based DL model, using information extracted from a single x-ray projection. Finally, a biomechanical modeling-driven DL model was applied to solve the intra-liver motion for tumor localization, using the liver boundary motion derived via prior steps. Main results. Surf-X-Bio demonstrated higher accuracy and better robustness in tumor localization, as compared to surface-image-only and x-ray-only models. By Surf-X-Bio, the mean (±s.d.) 95-percentile Hausdorff distance of the liver boundary from the ‘ground-truth’ decreased from 9.8 (±4.5) (before motion estimation) to 2.4 (±1.6) mm. The mean (±s.d.) center-of-mass localization error of the liver tumors decreased from 8.3 (±4.8) to 1.9 (±1.6) mm. Significance. Surf-X-Bio can accurately track liver tumors from combined surface imaging and x-ray imaging. The fast computational speed (<250 milliseconds per inference) allows it to be applied clinically for real-time motion management and adaptive radiotherapy.

Funder

National Institutes of Health

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3