FBP-Net for direct reconstruction of dynamic PET images

Author:

Wang Bo,Liu Huafeng

Abstract

Abstract Dynamic positron emission tomography (PET) imaging can provide information about metabolic changes over time, used for kinetic analysis and auxiliary diagnosis. Existing deep learning-based reconstruction methods have too many trainable parameters and poor generalization, and require mass data to train the neural network. However, obtaining large amounts of medical data is expensive and time-consuming. To reduce the need for data and improve the generalization of network, we combined the filtered back-projection (FBP) algorithm with neural network, and proposed FBP-Net which could directly reconstruct PET images from sinograms instead of post-processing the rough reconstruction images obtained by traditional methods. The FBP-Net contained two parts: the FBP part and the denoiser part. The FBP part adaptively learned the frequency filter to realize the transformation from the detector domain to the image domain, and normalized the coarse reconstruction images obtained. The denoiser part merged the information of all time frames to improve the quality of dynamic PET reconstruction images, especially the early time frames. The proposed FBP-Net was performed on simulation and real dataset, and the results were compared with the state-of-art U-net and DeepPET. The results showed that FBP-Net did not tend to overfit the training set and had a stronger generalization.

Funder

National Key Technology Research and Development Program of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3