AI approach to biventricular function assessment in cine-MRI: an ultra-small training dataset and multivendor study

Author:

Wang Jing,Zhang Nan,Wang Shuyu,Liang Wei,Zhao HaiyueORCID,Xia Weili,Zhu Jianlei,Zhang YanORCID,Zhang Wei,Chai Senchun

Abstract

Abstract Objective. It was a great challenge to train an excellent and generalized model on an ultra-small data set composed of multi-orientation cardiac cine magnetic resonance imaging (MRI) images. We try to develop a 3D deep learning method based on an ultra-small training data set from muti-orientation cine MRI images and assess its performance of automated biventricular structure segmentation and function assessment in multivendor. Approach. We completed the training and testing of our deep learning networks using only heart datasets of 150 cases (90 cases for training and 60 cases for testing). This datasets were obtained from three different MRI vendors and each subject included two phases of the cardiac cycle and three cine sequences. A 3D deep learning algorithm combining Transformers and U-Net was trained. The performance of the segmentation was evaluated using the Dice metric and Hausdorff distance (HD). Based on this, the manual and automatic results of cardiac function parameters were compared with Pearson correlation, intraclass correlation coefficient (ICC) and Bland–Altman analysis in multivendor. Main results. The results show that the average Dice of 0.92, 0.92, 0.94 and HD95 of 2.50, 1.36, 1.37 for three sequences. The automatic and manual results of seven parameters were excellently correlated with the lowest r2 value of 0.824 and the highest of 0.983. The ICC (0.908–0.989, P < 0.001) showed that the results were highly consistent. Bland–Altman with a 95% limit of agreement showed there was no significant difference except for the difference in RVESV (P = 0.005) and LVM (P < 0.001). Significance. The model had high accuracy in segmentation and excellent correlation and consistency in function assessment. It provides a fast and effective method for studying cardiac MRI and heart disease.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3