CeLNet: a correlation-enhanced lightweight network for medical image segmentation
-
Published:2023-05-30
Issue:11
Volume:68
Page:115012
-
ISSN:0031-9155
-
Container-title:Physics in Medicine & Biology
-
language:
-
Short-container-title:Phys. Med. Biol.
Author:
Zhang Bangze,Wang Xiaoyan,Liu Lianggui,Zhang Denghui,Huang Xiaojie,Xia Ming,Jiang Weiwei,Huang Xiangsheng
Abstract
Abstract
Objective. Convolutional neural networks have been widely adopted for medical image segmentation with their outstanding feature representation capabilities. As the segmentation accuracy gets constantly updated, the complexity of networks increases as well. Complex networks can achieve better performance but require more parameters and are hard to train with limited resources, while lightweight models are faster but cannot fully utilize the contextual information of medical images. In this paper, we focus on better balancing the efficiency and accuracy. Approach. We propose a correlation-enhanced lightweight network (CeLNet) for medical image segmentation, which adopts a siamese structure for weight sharing and parameter saving. Through the feature reuse and feature stacking of parallel branches, a point-depth convolution parallel block (PDP Block) is proposed to reduce the model parameters and computational cost while improving the feature extraction capability of encoder. A relation module is also designed to extract feature correlations of input slices, which utilizes global and local attention to enhance feature connections, while reducing feature differences through element subtraction, and finally obtains contextual information of associated slices to improve the segmentation performance. Main results. We conduct extensive experiments on the LiTS2017, MM-WHS and ISIC2018 datasets, and the proposed model consumes merely 5.18M parameters but achieves excellent segmentation performance, specifically, a DSC of 0.9233 in LiTS2017 dataset, an average DSC of 0.7895 on MM-WHS dataset and an average DSC of 0.8401 on ISIC2018 dataset. Significance. CeLNet achieves state-of-the-art performance in multiple datasets while ensuring lightweight.
Funder
Zhejiang Provincial Natural Science Foundation of China
National Natural Science Foundation of China
Zhejiang Provincial Research Project on the Application of Public Welfare Technologies
National Key R&D Program of China
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Reference37 articles.
1. The liver tumor segmentation benchmark (LiTS);Bilic;Medical Image Analysis,2019
2. Encoder–decoder with atrous separable convolution for semantic image segmentation;Chen,2018
3. Mobile-former: bridging mobilenet and transformer;Chen,2022
4. U-net: learning dense volumetric segmentation from sparse annotation;Çiçek,2016
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献