The impact of training sample size on deep learning-based organ auto-segmentation for head-and-neck patients

Author:

Fang Yingtao,Wang JiazhouORCID,Ou Xiaomin,Ying Hongmei,Hu Chaosu,Zhang Zhen,Hu Weigang

Abstract

Abstract To investigate the impact of training sample size on the performance of deep learning-based organ auto-segmentation for head-and-neck cancer patients, a total of 1160 patients with head-and-neck cancer who received radiotherapy were enrolled in this study. Patient planning CT images and regions of interest (ROIs) delineation, including the brainstem, spinal cord, eyes, lenses, optic nerves, temporal lobes, parotids, larynx and body, were collected. An evaluation dataset with 200 patients were randomly selected and combined with Dice similarity index to evaluate the model performances. Eleven training datasets with different sample sizes were randomly selected from the remaining 960 patients to form auto-segmentation models. All models used the same data augmentation methods, network structures and training hyperparameters. A performance estimation model of the training sample size based on the inverse power law function was established. Different performance change patterns were found for different organs. Six organs had the best performance with 800 training samples and others achieved their best performance with 600 training samples or 400 samples. The benefit of increasing the size of the training dataset gradually decreased. Compared to the best performance, optic nerves and lenses reached 95% of their best effect at 200, and the other organs reached 95% of their best effect at 40. For the fitting effect of the inverse power law function, the fitted root mean square errors of all ROIs were less than 0.03 (left eye: 0.024, others: <0.01), and the R square of all ROIs except for the body was greater than 0.5. The sample size has a significant impact on the performance of deep learning-based auto-segmentation. The relationship between sample size and performance depends on the inherent characteristics of the organ. In some cases, relatively small samples can achieve satisfactory performance.

Funder

Shanghai Committee of Science and Technology Fund

Shanghai Xuhui District Artificial Intelligence Medical Hospital Cooperation Project

Varian Research Grant

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference31 articles.

1. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines;Brouwer;Radiother. Oncol.,2015

2. Advances in auto-segmentation;Cardenas;Semin. Radiat. Oncol.,2019

3. How much data is needed to train a medical image deep learning system to achieve necessary high accuracy?;Cho,2015

4. Recent developments in radiotherapy;Citrin;New. Engl. J. Med.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3