Abstract
Abstract
To investigate the impact of training sample size on the performance of deep learning-based organ auto-segmentation for head-and-neck cancer patients, a total of 1160 patients with head-and-neck cancer who received radiotherapy were enrolled in this study. Patient planning CT images and regions of interest (ROIs) delineation, including the brainstem, spinal cord, eyes, lenses, optic nerves, temporal lobes, parotids, larynx and body, were collected. An evaluation dataset with 200 patients were randomly selected and combined with Dice similarity index to evaluate the model performances. Eleven training datasets with different sample sizes were randomly selected from the remaining 960 patients to form auto-segmentation models. All models used the same data augmentation methods, network structures and training hyperparameters. A performance estimation model of the training sample size based on the inverse power law function was established. Different performance change patterns were found for different organs. Six organs had the best performance with 800 training samples and others achieved their best performance with 600 training samples or 400 samples. The benefit of increasing the size of the training dataset gradually decreased. Compared to the best performance, optic nerves and lenses reached 95% of their best effect at 200, and the other organs reached 95% of their best effect at 40. For the fitting effect of the inverse power law function, the fitted root mean square errors of all ROIs were less than 0.03 (left eye: 0.024, others: <0.01), and the R square of all ROIs except for the body was greater than 0.5. The sample size has a significant impact on the performance of deep learning-based auto-segmentation. The relationship between sample size and performance depends on the inherent characteristics of the organ. In some cases, relatively small samples can achieve satisfactory performance.
Funder
Shanghai Committee of Science and Technology Fund
Shanghai Xuhui District Artificial Intelligence Medical Hospital Cooperation Project
Varian Research Grant
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Reference31 articles.
1. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines;Brouwer;Radiother. Oncol.,2015
2. Advances in auto-segmentation;Cardenas;Semin. Radiat. Oncol.,2019
3. How much data is needed to train a medical image deep learning system to achieve necessary high accuracy?;Cho,2015
4. Recent developments in radiotherapy;Citrin;New. Engl. J. Med.,2017
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献