A probabilistic deep learning model of inter-fraction anatomical variations in radiotherapy

Author:

Pastor-Serrano OscarORCID,Habraken Steven,Hoogeman Mischa,Lathouwers Danny,Schaart DennisORCID,Nomura YusukeORCID,Xing Lei,Perkó ZoltánORCID

Abstract

Abstract Objective. In radiotherapy, the internal movement of organs between treatment sessions causes errors in the final radiation dose delivery. To assess the need for adaptation, motion models can be used to simulate dominant motion patterns and assess anatomical robustness before delivery. Traditionally, such models are based on principal component analysis (PCA) and are either patient-specific (requiring several scans per patient) or population-based, applying the same set of deformations to all patients. We present a hybrid approach which, based on population data, allows to predict patient-specific inter-fraction variations for an individual patient. Approach. We propose a deep learning probabilistic framework that generates deformation vector fields warping a patient's planning computed tomography (CT) into possible patient-specific anatomies. This daily anatomy model (DAM) uses few random variables capturing groups of correlated movements. Given a new planning CT, DAM estimates the joint distribution over the variables, with each sample from the distribution corresponding to a different deformation. We train our model using dataset of 312 CT pairs with prostate, bladder, and rectum delineations from 38 prostate cancer patients. For 2 additional patients (22 CTs), we compute the contour overlap between real and generated images, and compare the sampled and ‘ground truth’ distributions of volume and center of mass changes. Results. With a DICE score of 0.86 ± 0.05 and a distance between prostate contours of 1.09 ± 0.93 mm, DAM matches and improves upon previously published PCA-based models, using as few as 8 latent variables. The overlap between distributions further indicates that DAM’s sampled movements match the range and frequency of clinically observed daily changes on repeat CTs. Significance. Conditioned only on planning CT values and organ contours of a new patient without any pre-processing, DAM can accurately deformations seen during following treatment sessions, enabling anatomically robust treatment planning and robustness evaluation against inter-fraction anatomical changes.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

National Cancer Institute

KWF Kankerbestrijding

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3