Data-driven estimation of noise variance stabilization parameters for low-dose x-ray images

Author:

Hariharan Sai GokulORCID,Strobel NorbertORCID,Kaethner Christian,Kowarschik Markus,Fahrig Rebecca,Navab Nassir

Abstract

Abstract Purpose. Denoising x-ray images corrupted by signal-dependent mixed noise is usually approached either by considering noise statistics directly or by using noise variance stabilization (NVS) techniques. An advantage of the latter is that the noise variance can be stabilized to a known constant throughout the image, facilitating the application of denoising algorithms designed for the removal of additive Gaussian noise. A well-performing NVS is the generalized Anscombe transform (GAT). To calculate the GAT, the system gain as well as the variance of electronic noise are required. Unfortunately, these parameters are difficult to predict from the x-ray tube settings in clinical practice, because the system gain observed at the detector depends on the beam hardening caused by the patient. Materials and Methods. We propose a data-driven method for estimating the parameters required to carry out an NVS using the GAT. It utilizes the energy compaction property of the discrete cosine transform to obtain the NVS parameters using a robust regression approach relying on a linear Poisson-Gaussian model. The method has been experimentally validated with respect to beam hardening as well as denoising performance for different dose and scatter levels. Results. Across a range of low-dose x-ray settings, the proposed robust regression approach has estimated both system gain and electronic noise level with an average error of only 4.2%. When used to perform a GAT followed by the denoising of low-dose x-ray images, performance gains of 5% for peak-signal-to-noise ratio and 4% for structural similarity index can be obtained. Conclusion. The parameters needed to calculate the GAT can be estimated efficiently and robustly using a data-driven approach. The improved parameter estimation method facilitates a more accurate GAT-based NVS and, hence, better denoising of low-dose x-ray images when algorithms designed for additive Gaussian noise are applied.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3