A probabilistic approach for determining Monte Carlo beam source parameters: II. Impact of beam modeling uncertainties on dosimetric functions and treatment plans

Author:

Duchaine Jasmine,Wahl Mathilde,Markel Daniel,Bouchard Hugo

Abstract

Abstract Objective. The Monte Carlo method is recognized as a valid approach for the evaluation of dosimetric functions for clinical use. This procedure requires the accurate modeling of the considered linear accelerator. In Part I, we propose a new method to extract the probability density function of the beam model physical parameters. The aim of this work is to evaluate the impact of beam modeling uncertainties on Monte Carlo evaluated dosimetric functions and treatment plans in the context of small fields. Approach. Simulations of output factors, output correction factors, dose profiles, percent-depth doses and treatment plans are performed using the CyberKnife M6 model developed in Part I. The optimized pair of electron beam energy and spot size, and eight additional pairs of beam parameters representing a 95% confidence region are used to propagate the uncertainties associated to the source parameters to the dosimetric functions. Main results. For output factors, the impact of beam modeling uncertainties increases with the reduction of the field size and confidence interval half widths reach 1.8% for the 5 mm collimator. The impact on output correction factors cancels in part, leading to a maximum confidence interval half width of 0.44%. The impact is less significant for percent-depth doses in comparison to dose profiles. For these types of measurement, in absolute terms and in comparison to the reference dose, confidence interval half widths less than or equal to 1.4% are observed. For simulated treatment plans, the impact is more significant for the treatment delivered with a smaller field size with confidence interval half widths reaching 2.5% and 1.4% for the 5 and 20 mm collimators, respectively. Significance. Results confirm that AAPM TG-157's tolerances cannot apply to the field sizes studied. This study provides an insight on the reachable dose calculation accuracy in a clinical setup.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3