Abstract
Abstract
Objective. Intraventricular vector flow mapping (iVFM) is a velocimetric technique for retrieving two-dimensional velocity vector fields of blood flow in the left ventricular cavity. This method is based on conventional color Doppler imaging, which makes iVFM compatible with the clinical setting. We have generalized the iVFM for a three-dimensional reconstruction (3D-iVFM). Approach. 3D-iVFM is able to recover three-component velocity vector fields in a full intraventricular volume by using a clinical echocardiographic triplane mode. The 3D-iVFM problem was written in the spherical (radial, polar, azimuthal) coordinate system associated to the six half-planes produced by the triplane mode. As with the 2D version, the method is based on the mass conservation, and free-slip boundary conditions on the endocardial wall. These mechanical constraints were imposed in a least-squares minimization problem that was solved through the method of Lagrange multipliers. We validated 3D-iVFM in silico in a patient-specific CFD (computational fluid dynamics) model of cardiac flow and tested its clinical feasibility in vivo in patients and in one volunteer. Main results. The radial and polar components of the velocity were recovered satisfactorily in the CFD setup (correlation coefficients,
r
= 0.99 and 0.78). The azimuthal components were estimated with larger errors (
r
= 0.57) as only six samples were available in this direction. In both in silico and in vivo investigations, the dynamics of the intraventricular vortex that forms during diastole was deciphered by 3D-iVFM. In particular, the CFD results showed that the mean vorticity can be estimated accurately by 3D-iVFM. Significance. Our results tend to indicate that 3D-iVFM could provide full-volume echocardiographic information on left intraventricular hemodynamics from the clinical modality of triplane color Doppler.
Funder
Agence Nationale de la Recherche
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献