Head-and-neck organs-at-risk auto-delineation using dual pyramid networks for CBCT-guided adaptive radiotherapy

Author:

Dai Xianjin,Lei YangORCID,Wang Tonghe,Dhabaan Anees H,McDonald Mark,Beitler Jonathan J,Curran Walter J,Zhou Jun,Liu Tian,Yang XiaofengORCID

Abstract

Abstract Organ-at-risk (OAR) delineation is a key step for cone-beam CT (CBCT) based adaptive radiotherapy planning that can be a time-consuming, labor-intensive, and subject-to-variability process. We aim to develop a fully automated approach aided by synthetic MRI for rapid and accurate CBCT multi-organ contouring in head-and-neck (HN) cancer patients. MRI has superb soft-tissue contrasts, while CBCT offers bony-structure contrasts. Using the complementary information provided by MRI and CBCT is expected to enable accurate multi-organ segmentation in HN cancer patients. In our proposed method, MR images are firstly synthesized using a pre-trained cycle-consistent generative adversarial network given CBCT. The features of CBCT and synthetic MRI (sMRI) are then extracted using dual pyramid networks for final delineation of organs. CBCT images and their corresponding manual contours were used as pairs to train and test the proposed model. Quantitative metrics including Dice similarity coefficient (DSC), Hausdorff distance 95% (HD95), mean surface distance, and residual mean square distance (RMS) were used to evaluate the proposed method. The proposed method was evaluated on a cohort of 65 HN cancer patients. CBCT images were collected from those patients who received proton therapy. Overall, DSC values of 0.87 ± 0.03, 0.79 ± 0.10/0.79 ± 0.11, 0.89 ± 0.08/0.89 ± 0.07, 0.90 ± 0.08, 0.75 ± 0.06/0.77 ± 0.06, 0.86 ± 0.13, 0.66 ± 0.14, 0.78 ± 0.05/0.77 ± 0.04, 0.96 ± 0.04, 0.89 ± 0.04/0.89 ± 0.04, 0.83 ± 0.02, and 0.84 ± 0.07 for commonly used OARs for treatment planning including brain stem, left/right cochlea, left/right eye, larynx, left/right lens, mandible, optic chiasm, left/right optic nerve, oral cavity, left/right parotid, pharynx, and spinal cord, respectively, were achieved. This study provides a rapid and accurate OAR auto-delineation approach, which can be used for adaptive radiation therapy.

Funder

National Cancer Institute

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3