Multi-planar dual adversarial network based on dynamic 3D features for MRI-CT head and neck image synthesis

Author:

Touati RedhaORCID,Trung Le William,Kadoury SamuelORCID

Abstract

Abstract Objective. Head and neck radiotherapy planning requires electron densities from different tissues for dose calculation. Dose calculation from imaging modalities such as MRI remains an unsolved problem since this imaging modality does not provide information about the density of electrons. Approach. We propose a generative adversarial network (GAN) approach that synthesizes CT (sCT) images from T1-weighted MRI acquisitions in head and neck cancer patients. Our contribution is to exploit new features that are relevant for improving multimodal image synthesis, and thus improving the quality of the generated CT images. More precisely, we propose a Dual branch generator based on the U-Net architecture and on an augmented multi-planar branch. The augmented branch learns specific 3D dynamic features, which describe the dynamic image shape variations and are extracted from different view-points of the volumetric input MRI. The architecture of the proposed model relies on an end-to-end convolutional U-Net embedding network. Results. The proposed model achieves a mean absolute error (MAE) of 18.76 ± 5.167 in the target Hounsfield unit (HU) space on sagittal head and neck patients, with a mean structural similarity (MSSIM) of 0.95 ± 0.09 and a Frechet inception distance (FID) of 145.60 ± 8.38 . The model yields a MAE of 26.83 ± 8.27 to generate specific primary tumor regions on axial patient acquisitions, with a Dice score of 0.73 ± 0.06 and a FID distance equal to 122.58 ± 7.55 . The improvement of our model over other state-of-the-art GAN approaches is of 3.8%, on a tumor test set. On both sagittal and axial acquisitions, the model yields the best peak signal-to-noise ratio of 27.89 ± 2.22 and 26.08 ± 2.95 to synthesize MRI from CT input. Significance. The proposed model synthesizes both sagittal and axial CT tumor images, used for radiotherapy treatment planning in head and neck cancer cases. The performance analysis across different imaging metrics and under different evaluation strategies demonstrates the effectiveness of our dual CT synthesis model to produce high quality sCT images compared to other state-of-the-art approaches. Our model could improve clinical tumor analysis, in which a further clinical validation remains to be explored.

Funder

Fonds Québécois de la Recherche sur la Nature et les Technologies

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3