Data-driven ion-independent relative biological effectiveness modeling using the beam quality Q

Author:

Tian LihengORCID,Lühr ArminORCID

Abstract

Abstract Beam quality Q = Z2/E (Z = ion charge, E = energy), an alternative to the conventionally used linear energy transfer (LET), enables ion-independent modeling of the relative biological effectiveness (RBE) of ions. Therefore, the Q concept, i.e. different ions with similar Q have similar RBE values, could help to transfer clinical RBE knowledge from better-studied ion types (e.g. carbon) to other ions. However, the validity of the Q concept has so far only been demonstrated for low LET values. In this work, the Q concept was explored in a broad LET range, including the so-called overkilling region. The particle irradiation data ensemble (PIDE) was used as experimental in vitro dataset. Data-driven models, i.e. neural network (NN) models with low complexity, were built to predict RBE values for H, He, C and Ne ions at different in vitro endpoints taking different combinations of clinically available candidate inputs: LET, Q and linear-quadratic photon parameter α x/β x. Models were compared in terms of prediction power and ion dependence. The optimal model was compared to published model data using the local effect model (LEM IV). The NN models performed best for the prediction of RBE at reference photon doses between 2 and 4 Gy or RBE near 10% cell survival, using only α x/β x and Q instead of LET as input. The Q model was not significantly ion dependent (p > 0.5) and its prediction power was comparable to that of LEM IV. In conclusion, the validity of the Q concept was demonstrated in a clinically relevant LET range including overkilling. A data-driven Q model was proposed and observed to have an RBE prediction power comparable to a mechanistic model regardless of particle type. The Q concept provides the possibility of reducing RBE uncertainty in treatment planning for protons and ions in the future by transferring clinical RBE knowledge between ions.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3