DiffuseRT: predicting likely anatomical deformations of patients undergoing radiotherapy

Author:

Smolders AORCID,Rivetti L,Vatterodt N,Korreman SORCID,Lomax A,Sharma MORCID,Studen A,Weber D C,Jeraj RORCID,Albetini FORCID

Abstract

Abstract Objective. Predicting potential deformations of patients can improve radiotherapy treatment planning. Here, we introduce new deep-learning models that predict likely anatomical changes during radiotherapy for head and neck cancer patients. Approach. Denoising diffusion probabilistic models (DDPMs) were developed to generate fraction-specific anatomical changes based on a reference cone-beam CT (CBCT), the fraction number and the dose distribution delivered. Three distinct DDPMs were developed: (1) the image model was trained to directly generate likely future CBCTs, (2) the deformable vector field (DVF) model was trained to generate DVFs that deform a reference CBCT and (3) the hybrid model was trained similarly to the DVF model, but without relying on an external deformable registration algorithm. The models were trained on 9 patients with longitudinal CBCT images (224 CBCTs) and evaluated on 5 patients (152 CBCTs). Results. The generated images mainly exhibited random positioning shifts and small anatomical changes for early fractions. For later fractions, all models predicted weight losses in accordance with the training data. The distributions of volume and position changes of the body, esophagus, and parotids generated with the image and hybrid models were more similar to the ground truth distribution than the DVF model, evident from the lower Wasserstein distance achieved with the image (0.33) and hybrid model (0.30) compared to the DVF model (0.36). Generating several images for the same fraction did not yield the expected variability since the ground truth anatomical changes were only in 76% of the fractions within the 95% bounds predicted with the best model. Using the generated images for robust optimization of simplified proton therapy plans improved the worst-case clinical target volume V95 with 7% compared to optimizing with 3 mm set-up robustness while maintaining a similar integral dose. Significance. The newly developed DDPMs generate distributions similar to the real anatomical changes and have the potential to be used for robust anatomical optimization.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3