Investigating the robustness of a deep learning-based method for quantitative phase retrieval from propagation-based x-ray phase contrast measurements under laboratory conditions

Author:

Deshpande RuchaORCID,Avachat AshishORCID,Brooks Frank J,Anastasio Mark AORCID

Abstract

Abstract Objective. Quantitative phase retrieval (QPR) in propagation-based x-ray phase contrast imaging of heterogeneous and structurally complicated objects is challenging under laboratory conditions due to partial spatial coherence and polychromaticity. A deep learning-based method (DLBM) provides a nonlinear approach to this problem while not being constrained by restrictive assumptions about object properties and beam coherence. The objective of this work is to assess a DLBM for its applicability under practical scenarios by evaluating its robustness and generalizability under typical experimental variations. Approach. Towards this end, an end-to-end DLBM was employed for QPR under laboratory conditions and its robustness was investigated across various system and object conditions. The robustness of the method was tested via varying propagation distances and its generalizability with respect to object structure and experimental data was also tested. Main results. Although the end-to-end DLBM was stable under the studied variations, its successful deployment was found to be affected by choices pertaining to data pre-processing, network training considerations and system modeling. Significance. To our knowledge, we demonstrated for the first time, the potential applicability of an end-to-end learning-based QPR method, trained on simulated data, to experimental propagation-based x-ray phase contrast measurements acquired under laboratory conditions with a commercial x-ray source and a conventional detector. We considered conditions of polychromaticity, partial spatial coherence, and high noise levels, typical to laboratory conditions. This work further explored the robustness of this method to practical variations in propagation distances and object structure with the goal of assessing its potential for experimental use. Such an exploration of any DLBM (irrespective of its network architecture) before practical deployment provides an understanding of its potential behavior under experimental settings.

Funder

Illinois Campus Cluster Program

Delta Research Computing project

Foundation for the National Institutes of Health

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ortho-positronium lifetime for soft-tissue classification;Scientific Reports;2024-09-10

2. Single particle imaging of biological specimens;Sixth Conference on Frontiers in Optical Imaging and Technology: Novel Imaging Systems;2024-04-30

3. Robustness Challenges in Deep Learning: Strategies for Enhancing Model Resilience;2024 2nd International Conference on Disruptive Technologies (ICDT);2024-03-15

4. Maximum Likelihood Based Phase-Retrieval Using Fresnel Propagation Forward Models With Optional Constraints;IEEE Transactions on Computational Imaging;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3