Customized whole brain-covering 3D GRASE in multi-delay pseudo-continuous arterial spin labeling for duplex distinct hemodynamic mapping contrasts of brain tissues and circulation pathways

Author:

Hu YichenORCID,Wei Qing,Zhou Zhongyang,Hu Junpu,Xie Jun,Xu Jian

Abstract

Abstract Gradient and spin echo (GRASE) is widely employed in arterial spin labeling (ASL) as an efficient readout sequence. Hemodynamic parameter mappings of perfusion, such as cerebral blood flow (CBF) and arterial transit time (ATT), can be derived via multi-delay ASL acquisitions. Multi-delay ASL perfusion imaging inevitably suffers limited signal-to-noise ratio (SNR) since a motion-sensitized vessel suppressing module has to be employed to highlight perfusion signals. The present work reveals that in multi-delay ASL, manipulation of GRASE sequence on either planar imaging echo echo train for adjusted spatial resolutions or FSE echo train for modulated extent of T 2-blurring can significantly alter the mapping contrasts among tissues and among cerebral lobes under different pathways of blood circulation, and meanwhile regulates SNR. Four separate multi-delay ASL scans with different echo train designs in 3D whole brain covering GRASE were carried out for healthy subjects to evaluate the variations in regard to the parameter quantifications and SNR. Based on the quantification mappings, the GRASE acquisition with moderate spatial resolution (3.5 × 3.5 × 4 mm3) and segmented k z scheme was recognized for the first time to be recommended for more unambiguous CBF and ATT contrasts between GM and WM in conjunction with more enhanced ATT contrast between anterior and posterior cerebral circulations, with reasonably good SNR. The technical proposal is of great value for the cutting-edge research of a variety of neurological diseases of global concerns.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3